Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7625, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993450

RESUMO

Carbon sequestration in grasslands has been proposed as an important means to offset greenhouse gas emissions from ruminant systems. To understand the potential and limitations of this strategy, we need to acknowledge that soil carbon sequestration is a time-limited benefit, and there are intrinsic differences between short- and long-lived greenhouse gases. Here, our analysis shows that one tonne of carbon sequestrated can offset radiative forcing of a continuous emission of 0.99 kg methane or 0.1 kg nitrous oxide per year over 100 years. About 135 gigatonnes of carbon is required to offset the continuous methane and nitrous oxide emissions from ruminant sector worldwide, nearly twice the current global carbon stock in managed grasslands. For various regions, grassland carbon stocks would need to increase by approximately 25% - 2,000%, indicating that solely relying on carbon sequestration in grasslands to offset warming effect of emissions from current ruminant systems is not feasible.

2.
Nat Food ; 4(8): 677-685, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37525077

RESUMO

Feeding animals more low-opportunity-cost feed products (LCFs), such as food waste and by-products, may decrease food-feed competition for cropland. Using a feed allocation optimization model that considers the availability of feed sources and animal requirements for protein and energy, we explored the perspectives of feeding more LCFs to animals in China. We found that about one-third of the animal feed consisted of human-edible products, while only 23% of the available LCFs were used as feed during 2009-2013. An increased utilization of LCFs (45-90 Mt) could potentially save 25-32% of feed-producing cropland area without impairing livestock productivity. Parallelly, about one-third of feed-related irrigation water, synthetic fertilizer and greenhouse gas emissions would be saved. Re-allocating the saved cropland could sustain the food energy demand of 30-185 million people. Achieving the potentials of increased LCF use requires improved technology and coordination among stakeholders.


Assuntos
Gases de Efeito Estufa , Eliminação de Resíduos , Animais , Humanos , Meio Ambiente , Ração Animal/análise , China
3.
J Dairy Sci ; 104(5): 5689-5704, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33663861

RESUMO

The difference between the theoretical maximum (potential) production and the actual production realized by farmers is referred to as the yield gap. The objectives of this study are to develop a mechanistic model for dairy cows that allows yield gap analysis in dairy production systems and to evaluate model performance. We extended and adapted an existing model for beef cattle to dairy cattle, and the new model was named Livestock simulator for Generic analysis of Animal Production Systems-Dairy cattle (LiGAPS-Dairy). Milk production and growth of an individual cow over its entire lifespan were described as a function of the animal's genotype, the ambient climate, feed quality, and available feed quantity. The model was parameterized for Holstein-Friesian cows. After calibration, we evaluated model performance by comparing simulated results and measured results from experimental farms in the Netherlands, which were not used for model calibration. Cows were permanently housed in stables, where the diet consisted of predetermined amounts of concentrates and ad libitum high-quality roughage. The mean absolute error (MAE) for simulated milk production per lactation was 12% of the measured milk production, whereas the MAE for simulated daily milk yields was 19%. The MAE for simulated feed intake per lactation was 10% of the measured feed intake, whereas the MAE for simulated daily feed intake was 19%. The average yield gap for dairy cows was 11% of the potential milk production (YP). Yield gap analysis indicated that for experimental farms in the Netherlands, the difference between YP and feed quality limited milk production (YL) of 1,009 kg fat- and protein-corrected milk was mainly explained by feed intake capacity (33%), protein deficiency (25%), cow weight at the start of experiments (23%), and heat stress (19%). The LiGAPS-Dairy model also indicated the periods during lactation in which these factors affected milk production. In our opinion, the overall model performance is acceptable for permanently housed cows under Dutch conditions. The model needs to be evaluated further for other production systems, countries and breeds. Thereafter, LiGAPS-Dairy can be used for yield gap analysis and exploration of options to increase resource use efficiency in dairy production.


Assuntos
Ração Animal , Lactação , Animais , Bovinos , Dieta/veterinária , Feminino , Leite , Países Baixos
4.
Glob Chang Biol ; 24(9): 4185-4194, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29788551

RESUMO

The need for more sustainable production and consumption of animal source food (ASF) is central to the achievement of the sustainable development goals: within this context, wise use of land is a core challenge and concern. A key question in feeding the future world is: how much ASF should we eat? We demonstrate that livestock raised under the circular economy concept could provide a significant, nonnegligible part (9-23 g/per capita) of our daily protein needs (~50-60 g/per capita). This livestock then would not consume human-edible biomass, such as grains, but mainly convert leftovers from arable land and grass resources into valuable food, implying that production of livestock feed is largely decoupled from arable land. The availability of these biomass streams for livestock then determines the boundaries for livestock production and consumption. Under this concept, the competition for land for feed or food would be minimized and compared to no ASF, including some ASF in the human diet could free up about one quarter of global arable land. Our results also demonstrate that restricted growth in consumption of ASF in Africa and Asia would be feasible under these boundary conditions, while reductions in the rest of the world would be necessary to meet land use sustainability criteria. Managing this expansion and contraction of future consumption of ASF is essential for achieving sustainable nutrition security.


Assuntos
Ração Animal/análise , Criação de Animais Domésticos/métodos , Bovinos/fisiologia , Dieta/veterinária , Animais , Abastecimento de Alimentos/métodos , Gado
5.
Environ Sci Technol ; 51(8): 4503-4511, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28318241

RESUMO

Gaseous emissions from animal manure are considerable contributor to global ammonia (NH3) and agriculture greenhouse gas (GHG) emissions. Given the demand to promote mitigation of GHGs while fostering sustainable development of the Paris Agreement, an improvement of management systems is urgently needed to help mitigate climate change and to improve atmospheric air quality. This study presents a meta-analysis and an integrated assessment of gaseous emissions and mitigation potentials for NH3, methane (CH4), and nitrous oxide (N2O) (direct and indirect) losses from four typical swine manure management systems (MMSs). The resultant emission factors and mitigation efficiencies allow GHG and NH3 emissions to be estimated, as well as mitigation potentials for different stages of swine operation. In particular, changing swine manure management from liquid systems to solid-liquid separation systems, coupled with mitigation measures, could simultaneously reduce GHG emissions by 65% and NH3 emissions by 78%. The resultant potential reduction in GHG emissions from China's pig production alone is greater than the entire GHG emissions from agricultural sector of France, Australia, or Germany, while the reduction in NH3 emissions is equivalent to 40% of the total NH3 emissions from the European Union. Thus, improved swine manure management could have a significant impact on global environment issues.


Assuntos
Amônia , Esterco , Poluentes Atmosféricos , Animais , Mudança Climática , Gases , Efeito Estufa , Metano , Óxido Nitroso , Suínos
6.
Glob Chang Biol ; 22(12): 3859-3864, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27185416

RESUMO

More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identify a preliminary global target for reducing emissions from agriculture of ~1 GtCO2 e yr-1 by 2030 to limit warming in 2100 to 2 °C above pre-industrial levels. Yet plausible agricultural development pathways with mitigation cobenefits deliver only 21-40% of needed mitigation. The target indicates that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices. A more comprehensive target for the 2 °C limit should be developed to include soil carbon and agriculture-related mitigation options. Excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors or reduce the feasibility of meeting the 2 °C limit.


Assuntos
Agricultura , Mudança Climática , Gases/análise , Efeito Estufa/prevenção & controle , Carbono/análise , Efeito Estufa/legislação & jurisprudência , Cooperação Internacional , Metano/análise , Política Pública , Solo/química
7.
Meat Sci ; 109: 2-12, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26117397

RESUMO

Beef makes a substantial contribution to food security, providing protein, energy and also essential micro-nutrients to human populations. Rumination allows cattle - and other ruminant species - to digest fibrous feeds that cannot be directly consumed by humans and thus to make a net positive contribution to food balances. This contribution is of particular importance in marginal areas, where agro-ecological conditions and weak infrastructures do not offer much alternative. It is also valuable where cattle convert crop residues and by-products into edible products and where they contribute to soil fertility through their impact on nutrients and organic matter cycles. At the same time, environmental sustainability issues are acute. They chiefly relate to the low efficiency of beef cattle in converting natural resources into edible products. Water use, land use, biomass appropriation and greenhouse gas emissions are for example typically higher per unit of edible product in beef systems than in any other livestock systems, even when corrected for nutritional quality. This particularly causes environmental pressure when production systems are specialized towards the delivery of edible products, in large volumes. The paper discusses environmental challenges at global level, recognizing the large diversity of systems. Beef production is faced with a range of additional sustainability challenges, such as changing consumer perceptions, resilience to climate change, animal health and inequities in access to land and water resources. Entry-points for environmental sustainability improvement are discussed within this broader development context.


Assuntos
Criação de Animais Domésticos , Meio Ambiente , Abastecimento de Alimentos , Carne Vermelha , Animais , Bovinos , Efeito Estufa , Humanos , Internacionalidade , Recursos Naturais
8.
Proc Natl Acad Sci U S A ; 110(52): 20894-9, 2013 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-23019587

RESUMO

Recent research has shed light on the cost-effective contribution that agriculture can make to global greenhouse gas abatement; however, the resulting impacts on agricultural production, producer livelihoods, and food security remain largely unexplored. This paper provides an integrated assessment of the linkages between land-based climate policies, development, and food security, with a particular emphasis on abatement opportunities and impacts in the livestock sector. Targeting Annex I countries and exempting non-Annex I countries from land-based carbon policies on equity or food security grounds may result in significant leakage rates for livestock production and agriculture as a whole. We find that such leakage can be eliminated by supplying forest carbon sequestration incentives to non-Annex I countries. Furthermore, substantial additional global agricultural abatement can be attained by extending a greenhouse gas emissions tax to non-Annex I agricultural producers, while compensating them for their additional tax expenses. Because of their relatively large emissions intensities and limited abatement possibilities, ruminant meat producers face the greatest market adjustments to land-based climate policies. We also evaluate the impacts of climate policies on livelihoods and food consumption in developing countries. In the absence of non-Annex I abatement policies, these impacts are modest. However, strong income and food consumption impacts surface because of higher food costs after forest carbon sequestration is promoted at a global scale. Food consumption among unskilled labor households falls but rises for the representative farm households, because global agricultural supplies are restricted and farm prices rise sharply in the face of inelastic food demands.


Assuntos
Agricultura/métodos , Mudança Climática , Abastecimento de Alimentos/métodos , Gado/metabolismo , Modelos Teóricos , Política Pública , Agricultura/economia , Animais , Sequestro de Carbono
10.
Bioresour Technol ; 96(2): 263-76, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15381225

RESUMO

Under growing and urbanizing demand, livestock production is rapidly evolving in South, East and South-east Asia, with both an increase of production and a shift to intensive production systems. These changes infer impacts on the environment, on public health and on rural development. Environmental impacts are mainly associated with a mismanagement of animal excreta, leading to pollution of surface water, ground water and soils by nutrients, organic matter, and heavy metals. In the framework of the Livestock Environment and Development Initiative, this research aims at assessing, on a regional scale, the impacts of livestock production on nutrient fluxes. Phosphate (P(2)O(5)) mass balances were chosen as an indicator and were calculated on the basis of spatially modelled livestock densities, estimated excretion values and crop uptake. The results show a strong West--East gradient regarding the distribution of monogastrics, with clear concentration in densely populated areas and around urban centres. P(2)O(5) overloads are estimated on 23.6% of the study area's agricultural land, mainly located in eastern China, the Ganges basin and around urban centres such as Bangkok, Ho Chi Minh City and Manila. On average, livestock manure is estimated to account for 39.4% of the agricultural P(2)O(5) supply (the remaining share being supplied by chemical fertilisers). Livestock is the dominant agricultural source of P(2)O(5) around urban centres and in livestock specialised areas (southern and north-eastern China), while chemical fertilisers are dominant in crop (rice) intensive areas.


Assuntos
Agricultura/métodos , Meio Ambiente , Agricultura/tendências , Criação de Animais Domésticos/métodos , Criação de Animais Domésticos/tendências , Fenômenos Fisiológicos da Nutrição Animal , Animais , Ásia , Bovinos , Fertilizantes , Esterco , Fosfatos/metabolismo , Compostos de Fósforo/análise , Compostos de Fósforo/metabolismo , Aves Domésticas , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...